These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparative toxicity and virulence of Escherichia coli clones expressing variant and chimeric Shiga-like toxin type II operons. Author: Paton AW, Bourne AJ, Manning PA, Paton JC. Journal: Infect Immun; 1995 Jul; 63(7):2450-8. PubMed ID: 7790056. Abstract: Shiga-like toxin (SLT)-producing strains of Escherichia coli are known to cause diarrhea, hemorrhagic colitis, and hemolytic-uremic syndrome in humans. The SLTs, particularly those related to type II (SLT-II), are a diverse family of toxins which may have differing in vitro or in vivo properties. To examine the impact of naturally occurring SLT-II sequence variation on the capacity of a given E. coli strain to cause disease, operons encoding four different SLT-II-related toxins, designated SLT-II/O111, SLT-II/OX3a, SLT-II/OX3b, and SLT-II/O48, were cloned in the same orientation in pBluescript. French pressure cell lysates of E. coli DH5 alpha derivatives carrying these plasmids differed markedly in cytotoxicity for Vero cells, with 50% cytotoxic doses ranging from 20 to 328,000/ml. The strains also differed in oral virulence for streptomycin-treated mice, as judged by survival rate and/or median survival time, but virulence did not necessarily correlate with in vitro cytotoxicity. The SLT-II type associated with the lowest oral virulence was SLT-II/O111. Both the overall survival rate and the median survival time of mice challenged with clones producing this toxin were significantly greater than that for mice challenged with a clone producing the closely related SLT-II/OX3a. Experiments with clones carrying chimeric O111/OX3a SLT-II operons indicated that the reduced virulence was associated with an Arg-176-->Gly substitution in the mature A subunit. Clones producing SLT-II/O48 and SLT-II/OX3b had similarly high cytotoxicities for Vero cells, but the latter was more virulent when fed to streptomycin-treated mice, as judged by median survival time. Experiments with clones carrying chimeric O48/OX3b SLT-II operons indicated that the increased virulence was a function of the A subunit of SLT-II/OX3b, which differs from the A subunit of SLT-II/O48 by only two amino acids (Met-4-->Thr and Gly-102-->Asp, respectively). These findings raise the possibility that naturally occurring SLT-II sequence variations may impact directly on the capacity of a given SLT-producing E. coli strain to cause disease.[Abstract] [Full Text] [Related] [New Search]