These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Proteoglycan biosynthesis is required in BC3H1 myogenic cells for modulation of vascular smooth muscle alpha-actin gene expression in response to microenvironmental signals. Author: Lee SH, Yan H, Reeser JC, Dillman JM, Strauch AR. Journal: J Cell Physiol; 1995 Jul; 164(1):172-86. PubMed ID: 7790390. Abstract: Induction of vascular smooth muscle (VSM) alpha-actin mRNA expression during cytodifferentiation of mouse BC3H1 myogenic cells coincides with the accumulation of cell surface- and extracellular matrix-associated sulfated proteoglycans. Inhibition of proteoglycan biosynthesis in myogenic cells using an artificial beta-D-xyloside glycosaminoglycan acceptor was accompanied by a reduction in cell surface/extracellular matrix proteoglycans and VSM alpha-actin mRNA expression while enhancing the secretion of free chondroitin sulfate/dermatan sulfate and heparan sulfate glycosaminoglycans into the culture medium. Maximum inhibition of VSM alpha-actin mRNA expression required that proteoglycan biosynthesis be blocked during the early phase of cytodifferentiation when myoblasts were fully confluent and quiescent. The inhibitory effect of beta-D-xyloside on alpha-actin mRNA expression resulted from attenuation at both the transcriptional and post-transcriptional control points. Sustained proteoglycan biosynthesis was required for induction of VSM alpha-actin mRNA in quiescent myoblasts in response to cytodifferentiation-permissive, substrate-associated macromolecules (SAM) or upon exposure to soluble serum factors capable of transiently stimulating VSM alpha-actin gene transcription. The results suggested that efficient myoblast cytodifferentiation and modulation of VSM alpha-actin mRNA levels depended on intact cell surface proteoglycans to convey signals generated as a consequence of cellular interaction with substrate components and serum factors.[Abstract] [Full Text] [Related] [New Search]