These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Computer modelling of the alpha-helical coiled coil: packing of side-chains in the inner core. Author: Offer G, Sessions R. Journal: J Mol Biol; 1995 Jun 23; 249(5):967-87. PubMed ID: 7791220. Abstract: In order to predict the structure of alpha-helical coiled-coil proteins from their sequences, it is necessary to know how the side-chains pack in the interface between the alpha-helical strands. Since in alpha-fibrous proteins leucine is the most common residue at both the a and d positions of the heptad repeat, which form the inner core of the interface, we determined the lowest-energy conformation for a two-stranded coiled-coil with the sequence (LAALAAA)5. Coiled-coils were constructed using the Crick equations with a range of pitches, major helical radii and relative rotations of the two strands, and with different starting side-chain conformations. On energy minimisation, convergence occurred to a small number of structures. The lowest-energy coiled-coil had 2-fold rotational symmetry, an average pitch of 131 A and an average radius of 4.52 A; the leucine side-chain conformations were tt and g+t at the a and d positions. This coiled-coil was used as a former to determine the lowest-energy side-chain conformations for the 63 combinations of a and d residues that occur in the repeating heptad sequence of rat skeletal myosin. The leucine residues at the a and d positions of the central heptad were replaced by the a-d pair of interest and molecular dynamics simulations performed to allow the side-chains of these residues to explore conformational space. The lowest-energy side-chain conformation of a residue at an a or d position depends on the nature of the partnering residue, consistent with the fact that these side-chains pack against one another. In most cases the lowest-energy structure was symmetric but in a few cases the side-chains were asymmetrically disposed in the two strands. The local pitch is very sensitive to the nature of the residues in the inner core and varies over a twofold range. In contrast, the radius and relative rotation of the two strands were relatively insensitive to sequence.[Abstract] [Full Text] [Related] [New Search]