These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Parvalbumin and calbindin D-28k in vagal and glossopharyngeal sensory neurons of the rat.
    Author: Ichikawa H, Helke CJ.
    Journal: Brain Res; 1995 Mar 27; 675(1-2):337-41. PubMed ID: 7796149.
    Abstract:
    Parvalbumin- and calbindin D-28k-immunoreactivities (ir) were examined in the glossopharyngeal and vagal sensory ganglia (petrosal, nodose and jugular ganglia), the carotid sinus nerve and the carotid body. Parvalbumin-ir nerve cells were mostly localized in the petrosal and nodose ganglia and were rare in the jugular ganglion. Calbindin D-28k-ir nerve cells were found in moderate and large numbers in the petrosal and nodose ganglia, respectively. Only a few calbindin D-28k-ir nerve cells were observed in the jugular ganglion. The carotid sinus nerve and carotid body contained numerous calbindin D-28k-ir nerve fibers but few parvalbumin-ir nerve fibers. Studies of the coexistence of these calcium-binding proteins with calcitonin gene-related peptide (CGRP)- and tyrosine hydroxylase (TH)-ir showed that CGRP-ir was rarely colocalized in parvalbumin- or calbindin D-28k-ir nerve cells in the petrosal or nodose ganglion. Moreover, TH-ir was not generally contained in parvalbumin-ir nerve cells in the petrosal, nodose and jugular ganglia while a portion (15-19%) of calbindin D-28k-ir neurons in the petrosal and nodose ganglia colocalized TH-ir. These findings are consistent with the involvement of calcium-binding proteins, particularly calbindin D-28k, in the function of visceral sensory neural systems of the glossopharyngeal and vagus nerves and, perhaps, in baro- and chemoreceptor neurotransmission.
    [Abstract] [Full Text] [Related] [New Search]