These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sequestration of muscarinic acetylcholine receptor m2 subtypes. Facilitation by G protein-coupled receptor kinase (GRK2) and attenuation by a dominant-negative mutant of GRK2. Author: Tsuga H, Kameyama K, Haga T, Kurose H, Nagao T. Journal: J Biol Chem; 1994 Dec 23; 269(51):32522-7. PubMed ID: 7798253. Abstract: Sequestration of m2 receptors (muscarinic acetylcholine receptor m2 subtypes), which was assessed as loss of N-[3H]methylscopolamine ([3H]NMS) binding activity from the cell surface, was examined in COS 7 and BHK-21 cells that had been transfected with expression vectors encoding the m2 receptor and, independently, vectors encoding a G protein-coupled receptor kinase (GRK2) (beta-adrenergic receptor kinase 1) or a GRK2 dominant-negative mutant (DN-GRK2). The sequestration of m2 receptors became apparent when the cells were treated with 10(-5) M or higher concentrations of carbamylcholine. In this case, approximately 40% or 20-25% of the [3H]NMS binding sites on COS 7 or BHK-21 cells, respectively, were sequestered with a half-life of 15-25 min. In cells in which GRK2 was also expressed, the sequestration became apparent in the presence of 10(-7) M carbamylcholine. Approximately 40% of the [3H]NMS binding sites on both COS 7 and BHK-21 cells were sequestered in the presence of 10(-6) M or higher concentrations of carbamylcholine. When DN-GRK2 was expressed in COS 7 cells, the proportion of [3H]NMS binding sites sequestered in the presence of 10(-5) M or higher concentrations of carbamylcholine was reduced to 20-30%. These results indicate that the phosphorylation of m2 receptors by GRK2 facilitates their sequestration. These results are in contrast with the absence of a correlation between sequestration and the phosphorylation of beta-adrenergic receptors by the GRK2 and suggests that the consequences of phosphorylation by GRK2 are different for different receptors.[Abstract] [Full Text] [Related] [New Search]