These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of marker chromosomes in thirteen patients using FISH probing.
    Author: Daniel A, Malafiej P, Preece K, Chia N, Nelson J, Smith M.
    Journal: Am J Med Genet; 1994 Oct 15; 53(1):8-18. PubMed ID: 7802042.
    Abstract:
    Fourteen marker chromosomes were studied by FISH (fluorescence in-situ hybridization) in cytogenetic preparations from 13 patients. The derived markers were identified as one isodicentric bisatellited mar(22), one fragment sized r(X), one fragment sized r(Y), one i(18p), small autosomal ring markers in three different patients derived from chromosomes 2, 8, and 8, a marker comprised of 9p and part of 9qh, and 3 bisatellited apparently monocentric markers; one of each from chromosomes 13 or 21, 14 or 22, and 15. Two fragment sized small ring markers in one patient and a small ring marker in another were negative with all twenty-two different probes used. In addition, the small ring marker Y chromosome that was found in a boy with karyotype 46,X,-Y,+mar was negative with both pDXZ1 and pDYZ3. This anomaly of negative results with the battery of centromeric alphoid probes can be explained if one breakpoint for some small ring markers is very near to or within the centromere. Only some of the pericentromeric repetitive sequences in the normal chromosome would be represented in the chromosome specific alphoid probes, and presumably those corresponding to the currently available probes are truncated during the formation of the unidentified markers. In three of the small ring markers the FISH signal on the marker was much stronger than on the normal homologues in various proportions of cells, and this may indicate that some of the fragment sized small rings were multicentric. The literature was reviewed for Distamycin A/DAPI negative small ring markers that were present as extra chromosomes. There were only single published cases of most small rings but there were three r(8) cases, two r(1) cases, two r(12) cases, and two r(20) cases, uncomplicated by the presence of other chromosome abnormalities. Most cases with similar small rings were quite dissimilar phenotypically and syndrome identification was not possible, but in pooled data, 18/23 (about 80%) were developmentally and/or phenotypically abnormal. Some patients (5/23, about 20%) with small rings were dysmorphic without intellectual handicap. Of 28 such patients with small ring markers (Distamycin/Dapi negative) in pooled data there are 6 (about 20%) with multiple markers mostly derived from different chromosomes. This is a very high figure and would suggest that the ring formation events, although involving different chromosomes, must be related and must be an indicator of the mechanism of origin of this group of markers.
    [Abstract] [Full Text] [Related] [New Search]