These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Two components of calcium currents in the soma of photoreceptors of Hermissenda.
    Author: Yamoah EN, Crow T.
    Journal: J Neurophysiol; 1994 Sep; 72(3):1327-36. PubMed ID: 7807215.
    Abstract:
    1. The proposed mechanism of cellular plasticity underlying classical conditioning of Hermissenda involves Ca2+ influx through voltage-activated channels. This influx triggers several molecular cascades and leads to the phosphorylation of K+ channels in identified photoreceptors. We studied Ca2+ currents from isolated photoreceptors of Hermissenda with the whole cell patch-clamp technique. Two distinct Ca2+ currents were identified in isolated photoreceptors on the basis of differences in their voltage dependence, kinetics, and pharmacology. 2. One Ca2+ current was transient (ICa(t)), with a fast onset (approximately 5 ms), activated at -50 mV from a holding potential of -90 mV, and peaked at 0 mV. The second Ca2+ current, designated as sustained (ICa(s)), exhibited a delayed time-to-peak, activated at -30 mV, and reached maximum at 30 mV. 3. Steady-state activation curves for both currents were generated from normalized currents and fitted with the Boltzmann function; estimates of half-activation voltages for ICa(t) were -38.8 +/- 6.7 mV (mean +/- SD; n = 9) and 3.2 +/- 8.2 mV for ICa(s) (n = 11) with maximum slopes of 8.9 +/- 1.6 mV (n = 9) and 11.0 +/- 2.4 mV (n = 11). 4. The inactivation of ICa(s) was slow (time constants > 3 s) whereas ICa(t) inactivated rapidly (time constant of inactivation at various voltages; 75-600 ms). 5. Ni2+ (0.8 mM), Gd3+ (0.5 mM), and amiloride (10 microM) produced a reversible block of ICa(t) without affecting ICa(s). omega-Conotoxin GVIA (10 nM) irreversibly blocked ICa(s) whereas nitrendipine (20 microM) produced a reversible block. 6. ICa(t) may be responsible for steady-state membrane potential oscillations. ICa(s) may contribute to the maintenance of the amplitude of the plateau phase of the generator potential.
    [Abstract] [Full Text] [Related] [New Search]