These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Agrobacterium vitis nopaline Ti plasmid pTiAB4: relationship to other Ti plasmids and T-DNA structure.
    Author: Otten L, De Ruffray P.
    Journal: Mol Gen Genet; 1994 Nov 15; 245(4):493-505. PubMed ID: 7808399.
    Abstract:
    The Ti plasmid of the Agrobacterium vitis nopaline-type strain AB4 was subcloned and mapped. Several regions of the 157 kb Ti plasmid are similar or identical to parts of the A. vitis octopine/cucumopine (o/c)-type Ti plasmids, and other regions are homologous to the nopaline-type Ti plasmid pTiC58. The T-DNA of pTiAB4 is a chimaeric structure of recent origin: the left part is 99.2% homologous to the left part of the TA-DNA of the o/c-type Ti plasmids, while the right part is 97.1% homologous to the right part of an unusual nopaline T-DNA recently identified in strain 82.139, a biotype II strain from wild cherry. The 3' noncoding regions of the ipt genes from pTiAB4 and pTi82.139 are different from those of other ipt genes and contain a 62 bp fragment derived from the coding sequence of an ipt gene of unknown origin. A comparison of different ipt gene sequences indicates that the corresponding 62 bp sequence within the coding region of the AB4 ipt gene has been modified during the course of its evolution, apparently by sequence transfer from the 62 bp sequence in the 3' non-coding region. In pTi82.139 the original coding region of the ipt gene has remained largely unmodified. The pTiAB4 6b gene differs from its pTi82.139 counterpart by the lack of a 12 bp repeat in the 3' part of the coding sequence. This leads to the loss of four glutamic acid residues from a series of ten. In spite of these differences, the ipt and 6b genes of pTiAB4 are functional. Our results provide new insight into the evolution of Agrobacterium Ti plasmids and confirm the remarkable plasticity of these genetic elements. Possible implications for the study of bacterial phylogeny are discussed.
    [Abstract] [Full Text] [Related] [New Search]