These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells. Author: Chow RH, Klingauf J, Neher E. Journal: Proc Natl Acad Sci U S A; 1994 Dec 20; 91(26):12765-9. PubMed ID: 7809118. Abstract: We have used the secretory response of chromaffin cells to estimate the submembrane intracellular Ca2+ concentration ([Ca2+]i) "seen" by secretory granules during short depolarizations. The rate of secretion during a depolarization was assessed by combining the electrochemical method of amperometry and electrical capacitance measurements. The rate was then related to [Ca2+]i based on a previous characterization of how Ca2+ affects the dynamics of vesicle priming and fusion in chromaffin cells [Heinemann, C., Chow, R. H., Neher, E. & Zucker, R. S. (1994) Biophys. J. 67, in press]. Calculated [Ca2+]i rose during the depolarization to a peak of < 10 microM, then decayed over tens of milliseconds. In synapses, vesicles are presumed to be located within nanometers of Ca2+ channels where [Ca2+]i is believed to rise in only microseconds to near steady-state levels of hundreds of micromolar. Channel closure should lead to a decrease in [Ca2+]i also in microseconds. Our findings of the slower time course and the lower peak [Ca2+]i suggest that in chromaffin cells, unlike synapses, Ca2+ channels and vesicles are not strictly colocalized. This idea is consistent with previously published data on dense-core vesicle secretion from diverse cell types.[Abstract] [Full Text] [Related] [New Search]