These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Quinolone resistance mutations in the DNA gyrase gyrA and gyrB genes of Staphylococcus aureus. Author: Ito H, Yoshida H, Bogaki-Shonai M, Niga T, Hattori H, Nakamura S. Journal: Antimicrob Agents Chemother; 1994 Sep; 38(9):2014-23. PubMed ID: 7811012. Abstract: A 6.4-kb DNA fragment containing the DNA gyrase gyrA and gyrB genes was cloned and sequenced from the quinolone-susceptible Staphylococcus aureus type strain ATCC 12600. An expression plasmid was constructed by inserting the cloned genes into the Escherichia coli-S. aureus shuttle vector pAT19, and deletion plasmids carrying only functional gyrA and gyrB genes were derived from this plasmid. An efficient transformation system for S. aureus RN4220 was established by using these plasmids. Quinolone-resistant mutants of S. aureus RN4220 were isolated by three-step selection with quinolones. The first- and second-step mutants were considered to be transport mutants, and the third-step mutants were divided into five groups with respect to their resistance patterns and transformation results with gyrA and gyrB genes. Sequencing analysis of the resulting mutant gyrase genes showed that they had the following point mutations: group 1, Ser-84 (TCA) to Leu (TTA) in GyrA; group 2, Ser-84 (TCA) to Ala (GCA), Ser-85 (TCT) to Pro (CCT), or Glu-88 (GAA) to Lys (AAA) in GyrA; group 3, Asp-437 (GAC) to Asn (AAC) in GyrB; group 4, Arg-458 (CGA) to Gln (CAA) in GyrB; and group 5, Ser-85 (TCT) to Pro (CCT) in GyrA and Asp-437 (GAC) to Asn (AAC) in GyrB. When the gyrA and/or gyrB mutants were transformed with the wild-type gyrA and/or gyrB plasmids, they became quinolone susceptible, but transformants with the plasmids having the same mutations on the gyrA and/or gyrB genes did not confer susceptibility. These results indicate that mutations in both gyrA and gyrB can be responsible for quinolone resistance in S. aureus.[Abstract] [Full Text] [Related] [New Search]