These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mean-field calculations of chain packing and conformational statistics in lipid bilayers: comparison with experiments and molecular dynamics studies.
    Author: Fattal DR, Ben-Shaul A.
    Journal: Biophys J; 1994 Sep; 67(3):985-95. PubMed ID: 7811955.
    Abstract:
    A molecular, mean-field theory of chain packing statistics in aggregates of amphiphilic molecules is applied to calculate the conformational properties of the lipid chains comprising the hydrophobic cores of dipalmitoyl-phosphatidylcholine (DPPC), dioleoyl-phosphatidylcholine (DOPC), and palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayers in their fluid state. The central quantity in this theory, the probability distribution of chain conformations, is evaluated by minimizing the free energy of the bilayer assuming only that the segment density within the hydrophobic region is uniform (liquidlike). Using this distribution we calculate chain conformational properties such as bond orientational order parameters and spatial distributions of the various chain segments. The lipid chains, both the saturated palmitoyl (-(CH2)14-CH3) and the unsaturated oleoyl (-(CH2)7-CH = CH-(CH2)7-CH3) chains are modeled using rotational isomeric state schemes. All possible chain conformations are enumerated and their statistical weights are determined by the self-consistency equations expressing the condition of uniform density. The hydrophobic core of the DPPC bilayer is treated as composed of single (palmitoyl) chain amphiphiles, i.e., the interactions between chains originating from the same lipid headgroup are assumed to be the same as those between chains belonging to different molecules. Similarly, the DOPC system is treated as a bilayer of oleoyl chains. The POPC bilayer is modeled as an equimolar mixture of palmitoyl and oleoyl chains. Bond orientational order parameter profiles, and segment spatial distributions are calculated for the three systems above, for several values of the bilayer thickness (or, equivalently, average area/headgroup) chosen, where possible, so as to allow for comparisons with available experimental data and/or molecular dynamics simulations. In most cases the agreement between the mean-field calculations, which are relatively easy to perform, and the experimental and simulation data is very good, supporting their use as an efficient tool for analyzing a variety of systems subject to varying conditions (e.g., bilayers of different compositions or thicknesses at different temperatures).
    [Abstract] [Full Text] [Related] [New Search]