These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel mutagenesis strategy identifies distantly spaced amino acid sequences that are required for the phosphorylation of both the oligosaccharides of procathepsin D by N-acetylglucosamine 1-phosphotransferase. Author: Dustin ML, Baranski TJ, Sampath D, Kornfeld S. Journal: J Biol Chem; 1995 Jan 06; 270(1):170-9. PubMed ID: 7814370. Abstract: A novel combinatorial mutagenesis strategy (shuffle mutagenesis) was developed to identify sequences in the propiece and amino lobe of cathepsin D which direct oligosaccharide phosphorylation by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine 1-phosphotransferase. Propiece restriction fragments and oligonucleotide cassettes corresponding to 13 regions of the cathepsin D and glycopepsinogen amino lobes were randomly shuffled together to generate a large library of chimeric molecules. The library was inserted into an expression vector encoding the carboxyl lobe of cathepsin D with a carboxyl-terminal myc epitope and a CD8 transmembrane extension. Transfected COS1 cells expressing the membrane-anchored forms of the cathepsin D/glycopepsinogen chimeras at the cell surface were selected with solid phase mannose 6-phosphate receptor or an antibody to the myc epitope. Plasmids were rescued in Escherichia coli and sequenced by hybridization to the original oligonucleotide cassettes. Two regions of the cathepsin D amino lobe (segments 7 and 12) were found to contribute to proper folding, surface expression, and selective phosphorylation of the carboxyl lobe oligosaccharide. Two different cathepsin D regions (the propiece and segment 5) cooperated with a previously identified recognition element in the carboxyl lobe to allow efficient phosphorylation of both the amino and carboxyl lobe oligosaccharides. Three general models for extending the catalytic reach of N-acetylglucosamine 1-phosphotransferase to widely spaced oligosaccharides are presented.[Abstract] [Full Text] [Related] [New Search]