These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glucagon-like peptide-1 is a physiological incretin in rat.
    Author: Wang Z, Wang RM, Owji AA, Smith DM, Ghatei MA, Bloom SR.
    Journal: J Clin Invest; 1995 Jan; 95(1):417-21. PubMed ID: 7814643.
    Abstract:
    Glucagon-like peptide-1 7-36 amide (GLP-1) has been postulated to be the primary hormonal mediator of the entero-insular axis but evidence has been indirect. The discovery of exendin (9-39), a GLP-1 receptor antagonist, allowed this to be further investigated. The IC50 for GLP-1 receptor binding, using RIN 5AH beta-cell membranes, was found to be 0.36 nmol/l for GLP-1 and 3.44 nmol/l for exendin (9-39). There was no competition by exendin (9-39) at binding sites for glucagon or related peptides. In the anaesthetized fasted rat, insulin release after four doses of GLP-1 (0.1, 0.2, 0.3, and 0.4 nmol/kg) was tested by a 2-min intravenous infusion. Exendin (9-39) (1.5, 3.0, and 4.5 nmol/kg) was administered with GLP-1 0.3 nmol/kg, or saline, and only the highest dose fully inhibited insulin release. Exendin (9-39) at 4.5 nmol/kg had no effect on glucose, arginine, vasoactive intestinal peptide or glucose-dependent insulinotropic peptide stimulated insulin secretion. Postprandial insulin release was studied in conditioned conscious rats after a standard meal. Exendin (9-39) (0.5 nmol/kg) considerably reduced postprandial insulin concentrations, for example by 48% at 15 min (431 +/- 21 pmol/l saline, 224 +/- 32 pmol/l exendin, P < 0.001). Thus, GLP-1 appears to play a major role in the entero-insular axis.
    [Abstract] [Full Text] [Related] [New Search]