These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The stimulative effect of diffusion potential on enoxacin uptake across rat intestinal brush-border membranes.
    Author: Hirano T, Iseki K, Miyazaki S, Takada M, Kobayashi M, Sugawara M, Miyazaki K.
    Journal: J Pharm Pharmacol; 1994 Aug; 46(8):676-9. PubMed ID: 7815283.
    Abstract:
    Evidence of a membrane potential dependence for enoxacin uptake by rat intestinal brush-border membrane vesicles has been found. The transient overshooting uptake of enoxacin disappeared in the voltage-clamped brush-border membrane vesicles in the presence of an outward H(+)-gradient. Momentary dissipation of the H(+)-gradient itself by carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) did not affect the uptake of enoxacin. In contrast, enoxacin uptake was depressed by an interior positive K(+)-diffusion potential induced by valinomycin. Furthermore, not only the outward H(+)-gradient but also an inward Cl(-)-gradient caused a stimulating effect on enoxacin uptake, and the stimulation by the Cl(-)-gradient was dissipated by using voltage-clamped membrane vesicles. These results indicate that enoxacin transportation across the brush-border membrane is dependent on the ionic diffusion potential. On the other hand, neither Gly-Gly nor guanidine had any effect on enoxacin uptake by the membrane vesicles in the presence of an inward (for Gly-Gly) or outward (for guanidine) H(+)-gradient as a driving force for each transport system. Therefore, it seems that enoxacin transport through the intestinal epithelia does not participate in the carrier-mediated transport systems for Gly-Gly and guanidine.
    [Abstract] [Full Text] [Related] [New Search]