These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Residue threonine-149 of the Salmonella typhimurium CysB transcription activator: mutations causing constitutive expression of positively regulated genes of the cysteine regulon. Author: Colyer TE, Kredich NM. Journal: Mol Microbiol; 1994 Sep; 13(5):797-805. PubMed ID: 7815939. Abstract: In both Salmonella typhimurium and Escherichia coli, CysB is a LysR family transcriptional activator, which regulates genes of the cysteine regulon. Transcription activation of cys genes also requires an inducer, N-acetyl-L-serine, and cysB mutants that do not require inducer are termed constitutive, i.e. cysBc. After finding that two independently isolated cysBc mutants are substituted at amino acid residue threonine-149 (T149), we isolated the other 17 single-amino-acid substitutions by site-directed mutagenesis. Of the 19 mutant alleles, 11 supported normal growth on sulphate, and nine of these were cysBc. Four other mutants were 'leaky' cysB+, and four were cysB-. Insertions of up to 14 amino acids were also tolerated at T149, and two of three such mutants were cysBc. An allele containing a TAG translation terminator at codon 149 had no detectable function in a delta cysB strain, but gave a constitutive phenotype when introduced into either wild-type S. typhimurium or the E. coli strain NK1, which contains a cysB- mutation in a predicted helix-turn-helix region that interferes with specific binding of CysB to DNA and with autoregulation of cysB. The peptide encoded by the T149ter allele is proposed to interact with the wild-type CysB peptide or with the NK1 mutant peptide to form hetero-oligomers that do not require N-acetyl-L-serine for cys gene activation.[Abstract] [Full Text] [Related] [New Search]