These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The neurosteroid tetrahydroprogesterone counteracts corticotropin-releasing hormone-induced anxiety and alters the release and gene expression of corticotropin-releasing hormone in the rat hypothalamus.
    Author: Patchev VK, Shoaib M, Holsboer F, Almeida OF.
    Journal: Neuroscience; 1994 Sep; 62(1):265-71. PubMed ID: 7816204.
    Abstract:
    The ring-A-reduced progesterone derivative 5 alpha-pregnan-3 alpha-ol-20-one (tetrahydroprogesterone) is synthesized under normal physiological conditions in the brain and is a potent modulator of the GABA receptor. This neurosteroid has significant sedative and anxiolytic properties. Corticotropin-releasing hormone plays a major role in stress-induced activation of the hypothalamo-pituitary-adrenal axis, and sustained hyperactivity of hypothalamic corticotropin-releasing hormone-producing neurons may be causally related to both, increased pituitary-adrenal secretion and behavioural symptoms observed in anxiety and affective disorders. We investigated the effect of tetrahydroprogesterone on corticotropin-releasing hormone-induced anxiety, the basal and methoxamine-stimulated release of corticotropin-releasing hormone from hypothalamic organ explants in vitro, and adrenalectomy-induced up-regulation of the gene expression of corticotropin-releasing hormone in the hypothalamic paraventricular nucleus in rats. At doses of 5 and 10 micrograms i.c.v., tetrahydroprogesterone counteracted the anxiogenic action of 0.5 microgram of corticotropin-releasing hormone. Tetrahydroprogesterone did not alter the basal release of corticotropin-releasing hormone in vitro, but suppressed the stimulatory effect of the alpha 1-adrenergic agonist methoxamine on this parameter. Measurements of the steady-state levels of mRNA coding for corticotropin-releasing hormone by quantitative in situ-hybridization histochemistry revealed that tetrahydroprogesterone was equipotent with corticosterone in preventing adrenalectomy-induced up-regulation of peptide gene expression. Systemic administration of tetrahydroprogesterone also restrained adrenalectomy-induced thymus enlargement. These results demonstrate that tetrahydroprogesterone has anxiolytic effects that are mediated through interactions with hypothalamic corticotropin-releasing hormone in both, genomic and non-genomic fashions.
    [Abstract] [Full Text] [Related] [New Search]