These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dietary regulation of the hepatic system n glutamine transporter in tumor-bearing rats. Author: Inoue Y, Bode BP, Souba WW. Journal: Am J Surg; 1995 Jan; 169(1):173-8. PubMed ID: 7817988. Abstract: BACKGROUND: Hepatocytes possess a novel, plasma-membrane, sodium ion (Na+)-independent, glutamine transporter (system n), which functions to transport glutamine out of the cell into the blood. In the tumor-bearing rat, the activity of system n increases but its regulation is unknown. We hypothesized that the increase in system n that occurs in rats with cancer was related to a fall in the circulating glutamine concentration. METHODS: Ten male rats underwent flank implantation with a cube of methylcholanthrene-induced fibrosarcoma cells and 10 rats underwent a sham operation. After 9 days of standard diet, all rats were randomized to receive either a glutamine-enriched oral diet or an isonitrogenous diet without supplemental glutamine, for 1 week. Tumors and livers were harvested 16 days postimplantation. Arterial blood samples were obtained from all animals. Hepatic plasma membrane vesicles were prepared and the carrier-mediated, Na(+)-independent transport of glutamine was assayed. RESULTS: When compared to nontumor-bearing animals, tumor-bearing rats that were fed a control diet exhibited hypoglutaminemia and a 2.3-fold increase in the activity of system n. Glutamine dietary supplementation produced blood glutamine levels that were similar in both tumor-bearing and nontumor-bearing rats, apparently abrogating the increase in system n activity that was observed in tumor-bearing rats that were not fed supplemental glutamine. Tumor-bearing animals receiving supplemental glutamine had a decreased number of system n carriers (Vmax) in the hepatic plasma membrane compared to that of tumor-bearing animals receiving a control diet; this apparently abrogated the glutamine efflux rate. Glutamine feeding did not alter system n activity in nontumor-bearing controls. CONCLUSIONS: In the tumor-bearing animal model, system n is modulated by the circulating glutamine concentration. This is the first study that demonstrates the ability of specialized nutrition to "downregulate" transport activity in vivo. Provision of glutamine-enriched diets to the host with cancer may maintain hepatic glutamine levels and prevent host glutamine depletion.[Abstract] [Full Text] [Related] [New Search]