These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Allosteric regulation of the ATP sulfurylase associated GTPase.
    Author: Wang R, Liu C, Leyh TS.
    Journal: Biochemistry; 1995 Jan 17; 34(2):490-5. PubMed ID: 7819241.
    Abstract:
    ATP sulfurylase catalyzes and chemically links the hydrolysis of GTP and the synthesis of activated sulfate (APS). Like many GTPases, its GTPase activity is allosterically regulated, in this case, by APS-forming reactants and their analogues. Using these activators, we have been able to mimic many of the complexes that form in the native reaction, including an E.AMP intermediate. The effects of each of these complexes on GTP hydrolysis are determined. The results of pre-steady-state and isotope trapping studies demonstrate that the binding of activator and substrate to the enzyme are near equilibrium and that the rate-determining step appears to be scission of the beta, gamma-bond of GTP. These properties of the system allow the energetic consequences of activator binding on the ground- and transition-state complexes to be evaluated. Activation occurs predominantly by transition-state stabilization, resulting in kcat increases. The values for kcat span a 180-fold range and vary with each activator. Km, or ground-state, effects are relatively small, approximately 3-fold, and are uniform throughout the activator series. These studies provide an in-depth view of the energetic interactions between the two active sites at each step of the APS-forming reaction.
    [Abstract] [Full Text] [Related] [New Search]