These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Spatiotemporal dynamics of intracellular [Ca2+]i oscillations during the growth and meiotic maturation of mouse oocytes. Author: Carroll J, Swann K, Whittingham D, Whitaker M. Journal: Development; 1994 Dec; 120(12):3507-17. PubMed ID: 7821218. Abstract: Calcium oscillations occur during meiotic maturation of mouse oocytes. They also trigger activation at fertilization. We have monitored [Ca2+]i in oocytes at different stages of growth and maturation to examine how the calcium release mechanisms alter during oogenesis. Spontaneous calcium oscillations occur every 2-3 minutes in the majority of fully grown (but immature) mouse oocytes released from antral follicles and resuming meiosis. The oscillations last for 2-4 hours after release from the follicle and take the form of global synchronous [Ca2+]i increases throughout the cell. Rapid image acquisition or cooling the bath temperature from 28 degrees C to 16 degrees C did not reveal any wave-like spatial heterogeneity in the [Ca2+]i signal. Calcium appears to reach highest levels in the germinal vesicle but this apparent difference of [Ca2+] in nucleus and cytoplasm is an artifact of dye loading. Smaller, growing immature oocytes are less competent: about 40% are able to resume meiosis and a similar proportion of these oocytes show spontaneous calcium oscillations. [Ca2+]i transients are not seen in oocytes that do not resume meiosis spontaneously in vitro. Nonetheless, these oocytes are capable of [Ca2+]i oscillations since they show them in response to the addition of carbachol or thimerosal. To examine how the properties of calcium release change during meiotic maturation, a calcium-releasing factor from sperm was microinjected into fully grown immature and mature oocytes. The sperm-factor-induced oscillations were about two-fold larger and longer in mature oocytes compared to immature oocytes. Calcium waves travelling at 40-60 microns/second were generated in mature oocytes, but not in immature oocytes. In some mature oocytes, successive calcium waves had different sites of origin. The modifications in the size and spatial organization of calcium transients during oocyte maturation may be a necessary prerequisite for normal fertilization.[Abstract] [Full Text] [Related] [New Search]