These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The PEST-like sequence of I kappa B alpha is responsible for inhibition of DNA binding but not for cytoplasmic retention of c-Rel or RelA homodimers. Author: Ernst MK, Dunn LL, Rice NR. Journal: Mol Cell Biol; 1995 Feb; 15(2):872-82. PubMed ID: 7823953. Abstract: In most cells, proteins belonging to the Rel/NF-kappa B family of transcription factors are held in inactive form in the cytoplasm by an inhibitor protein, I kappa B alpha. Stimulation of the cells leads to degradation of the inhibitor and transit of active DNA-binding Rel/NF-kappa B dimers to the nucleus. I kappa B alpha is also able to inhibit DNA binding by Rel/NF-kappa B dimers in vitro, suggesting that it may perform the same function in cells when the activating signal is no longer present. Structurally, the human I kappa B alpha molecule can be divided into three sections: a 70-amino-acid N terminus with no known function, a 205-residue midsection composed of six ankyrin-like repeats, and a very acidic 42-amino-acid C terminus that resembles a PEST sequence. In this study we examined how the structural elements of the I kappa B alpha protein correlate with its functional capabilities both in vitro and in vivo. Using a battery of I kappa B alpha mutants, we show that (i) a dimer binds a single I kappa B alpha molecule, (ii) the acidic C-terminal region of I kappa B alpha is not required for protein-protein binding and does not mask the nuclear localization signal of the dimer, (iii) the same C-terminal region is required for inhibition of DNA binding, and (iv) this inhibition may be accomplished by direct interaction between the PEST-like region and the DNA-binding region of one of the subunits of the dimer.[Abstract] [Full Text] [Related] [New Search]