These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Third place winner of the Conrad Jobst Award in the gold medal paper competition. Prevention of spinal cord dysfunction in a new model of spinal cord ischemia.
    Author: Lopez S, Manahan E, Evans JR, Kao RL, Browder W.
    Journal: Am Surg; 1995 Jan; 61(1):16-20. PubMed ID: 7832375.
    Abstract:
    Paraplegia or paraparesis caused by temporary cross-clamping of the aorta is a devastating sequela in patients after surgery of the thoracoabdominal aorta. No effective clinical method is available to protect the spinal cord from ischemic reperfusion injury. A small animal (rat) model of spinal cord ischemia is established to better understand the pathophysiological events and to evaluate potential treatments. Eighty-one male Sprague-Dawley rats weighing 300 g to 350 g were used for model development (45) and treatment evaluation (36). The heparinized and anesthetized rat was supported by a respirator following tracheostomy. The thoracic aorta was cannulated via the left carotid artery for post-clamping intra-aortic treatment solution administration. After thoracotomy, the aorta was freed and temporarily clamped just distal to the left subclavian artery and just proximal to the diaphragm for different time intervals: 0, 5, 10, 15, 20, 25, 30, 35, and 40 minutes (five animals per group). The motor function of the lower extremities postoperatively showed consistent impairment after 30 minutes clamping (5/5 rats were paralyzed), and this time interval was used for treatment evaluation. For each treatment, six animals per group were used, and direct local intra-aortic infusion of physiologic solution (2 mL) at different temperatures with or without buffer substances was given immediately after double cross-clamp to protect the ischemic spinal cord. Arterial blood (2 mL) was infused in the control group. The data indicate that the addition of HCO3-(20 mM) to the hypothermic (15 degrees C) solution offered complete protection of the spinal cord from ischemic injury.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]