These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Autophosphorylation-dependent protein kinase phosphorylates Ser25, Ser38, Ser65, Ser71, and Ser411 in vimentin and thereby inhibits cytoskeletal intermediate filament assembly.
    Author: Huang TJ, Lee TT, Lee WC, Lai YK, Yu JS, Yang SD.
    Journal: J Protein Chem; 1994 Aug; 13(6):517-25. PubMed ID: 7832980.
    Abstract:
    The autophosphorylation-dependent protein kinase has been identified as a potent vimentin kinase that incorporates 2 mol of phosphates per mol of protein and generates five major phosphorylation sites in vimentin. Tryptic phosphopeptide mapping by high-performance liquid chromatography followed by sequential manual Edman degradation and direct peptide sequence analysis revealed that Ser-25, Ser-38, Ser-65, and Ser-71 in the amino-terminal domain and Ser-411 in the carboxyl-terminal domain are the phosphorylation sites in vimentin phosphorylated by this kinase, indicating that autophosphorylation-dependent protein kinase is a potent and unique vimentin kinase. Functional study further revealed that phosphorylation of vimentin by autophosphorylation-dependent protein kinase can completely inhibit polymerization and assembly of the cytoskeletal intermediate filament as demonstrated by electron microscopic analysis. Taken together, the results provide initial evidence that the autophosphorylation-dependent protein kinase may function as a vimentin kinase involved in the structure-function regulation of the cytoskeletal system. The results also support the notion that this cyclic nucleotide- and calcium-independent protein kinase may function as a multisubstrate/multifunctional protein kinase involved in the regulation of diverse cell functions.
    [Abstract] [Full Text] [Related] [New Search]