These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: One class of growth hormone (GH) receptor and binding protein messenger ribonucleic acid in rat liver, GHR1, is sexually dimorphic and regulated by GH.
    Author: Baumbach WR, Bingham B.
    Journal: Endocrinology; 1995 Feb; 136(2):749-60. PubMed ID: 7835307.
    Abstract:
    In the rat, alternatively spliced messenger RNA (mRNA) species encode GH receptor (GHR) and GH-binding protein (GHBP). Additionally, these mRNAs are alternatively spliced in the 5'-untranslated region, resulting in at least two classes of GHR and GHBP mRNA with distinct first exons and identical coding regions. These alternative first exons define two unique classes of GHR and GHBP mRNA (called GHR1 and GHR2). The GHR1 class of RNA is expressed only in the liver, is far more abundant in females than males, and is particularly abundant during pregnancy. GHR1 RNA is induced later in development than is GHR2. Additional classes of GHR and GHBP RNA may also exist. The genomic structure of the GHR1 first exon reveals a putative promotor region with no TATA box, CAAT box, or other sequence elements suggesting specific responses. An in vivo approach was used to investigate the regulation of GHR1 expression. In female rats, gonadectomy was found to reduce the percentage of steady state GHR1 RNA levels in the liver, whereas male castration resulted in an induction of GHR1 RNA. However, short-term treatment with estrogen or testosterone had little effect, suggesting that direct regulation of GHR1 expression may occur through effector(s) other than gonadal steroids. Hypophysectomy abolished GHR1 RNA in females. Treatment of hypophysectomized females and castrated males with GH by single injection did not significantly induce GHR1 RNA, but treatment by continuous infusion of GH did. Little change in non-GHR1 RNA levels was observed for each of these treatments. The results suggest that: 1) the sexual dimorphism observed in total GHR and GHBP RNA in rat liver is attributable to the sexually dimorphic expression of the GHR1 class of RNA; 2) the sexually dimorphic pattern of GH release in rats regulates the GHR1 class of RNA; 3) changes in GHR and GHBP expression observed on gonadectomy, hypophysectomy, GH treatment, and pregnancy are best attributed to GHR1 regulation; and 4) since GHR1 is liver specific, the observed increases in serum GHBP concentration in response to sex steroids, GH pattern, and pregnancy are likely to originate from the liver.
    [Abstract] [Full Text] [Related] [New Search]