These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interactive effects of K+, acidosis, and catecholamines on isolated rabbit heart: implications for exercise.
    Author: Leitch SP, Patterson DJ.
    Journal: J Appl Physiol (1985); 1994 Sep; 77(3):1164-71. PubMed ID: 7836118.
    Abstract:
    Intense exercise can double arterial K+ concentration, decrease pH by 0.4 units, and increase catecholamines 15-fold. Any one of these changes may be cardiotoxic in a subject at rest, yet these changes are well tolerated in exercise. We tested the interactive effects of extracellular K+ concentration ([K+]o), metabolic acidosis (pH 7.0), and raised catecholamines in the isolated working rabbit heart when they were changed with similar kinetics and concentrations to those seen in exercise. Raised [K+]o (8 and 12 mM) significantly decreased aortic flow (AF) by 23 and 76%, respectively (P < 0.01). Acidosis decreased AF by 19% (P < 0.05) and by 38% in combination with 8 mM [K+]o (P < 0.05), making their combined effect additive. Either epinephrine (80 nM), norepinephrine (80 nM) or extracellular Ca2+ concentration (5 mM) offset the negative effects of 8 and 12 mM [K+]o on AF. Norepinephrine also improved AF in 8 mM [K+]o with acidosis. Thus, there may be a beneficial interaction among changes in K+, catecholamines, and acidosis during exercise such that each could offset the others' potentially harmful effects.
    [Abstract] [Full Text] [Related] [New Search]