These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glutamate-induced destabilization of intracellular calcium concentration homeostasis in cultured cerebellar granule cells: role of mitochondria in calcium buffering.
    Author: Kiedrowski L, Costa E.
    Journal: Mol Pharmacol; 1995 Jan; 47(1):140-7. PubMed ID: 7838122.
    Abstract:
    The exposure of cultured cerebellar granule cells for 4 min to glutamate (50 microM) in a Mg2+-free medium containing 10 microM glycine elicited a prompt increase of the intracellular Ca2+ concentration ([Ca2+]i) to 5 microM, which was followed by a decline to 1.5 microM (as measured using fura-2); both events occurred while the glutamate pulse increased the intracellular sodium concentration ([Na+]i) to an estimated 60-100 mM. Because under these circumstances the plasma membrane Na+/Ca2+ exchanger cannot extrude Ca2+, other mechanisms should operate in causing the [Ca2+]i decline. To evaluate a possible role of intracellular Ca2+ stores in Ca2+ buffering, thapsigargin, ryanodine, and dantrolene were tested. Thapsigargin (1 microM) and ryanodine (10 microM) failed to modify the glutamate-elicited [Ca2+]i transients; results with dantrolene could not be considered because this drug by itself affected the fura-2 fluorescence. In contrast, carbonyl cyanide m-chlorophenylhydrazone (1 microM) and antimycin A1 (1 microM), which dissipate mitochondrial membrane potential by different mechanisms, virtually abolished the [Ca2+]i decline occurring either during glutamate application or after its removal. Moreover, when the residual [Na+]i increase persisting after glutamate removal was artificially abated, the Ca2+-buffering capacity of neurons was significantly improved. These data suggest that most of the Ca2+ entering the neurons during excitotoxic glutamate exposure is diverted to mitochondria and that the glutamate-induced increase of [Na+]i limits this mitochondrial Ca2+-buffering capacity, presumably via activation of the mitochondrial Na+/Ca2+ exchanger.
    [Abstract] [Full Text] [Related] [New Search]