These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Metabolism of epoxyeicosatrienoic acids by cytosolic epoxide hydrolase: substrate structural determinants of asymmetric catalysis. Author: Zeldin DC, Wei S, Falck JR, Hammock BD, Snapper JR, Capdevila JH. Journal: Arch Biochem Biophys; 1995 Jan 10; 316(1):443-51. PubMed ID: 7840649. Abstract: The metabolism of cis-epoxyeicosatrienoic acids (EETs), methyl cis-epoxyeicosatrienoates, and cis-epoxyeicosanoic acids by cytosolic epoxide hydrolase was studied to identify substrate structural features important for stereoselective metabolism and chiral diol formation. 14(R), 15(S)-, 11(S),12(R)-, and 8(S),9(R)-EET, the predominant enantiomers present endogenously in rat organs, were metabolized at substantially higher rates than their antipodes. With the exception of 8(R),9(S)-EET (Km = 41 microM), differences in enantiomer hydration rates appear to be caused by Km-independent factors since the apparent Km values for the enantiomers of 14,15-, 11,12-, and 8(S),9(R)-EET were similar (between 3 and 5 microM). Chiral analysis of the diols resulting from enzymatic hydration of homochiral EETs showed that the regio and/or stereochemistry of water addition was EET regioisomer dependent. For the 11,12-EET enantiomers, water addition was nonregioselective; whereas, with both 8,9-EET antipodes water addition occurred predominantly at C9. Importantly, for 14,15-EET the regiochemistry of water addition was enantiomer-dependent. Only with 14(R),15(S)-EET did enzymatic hydration result in regiospecific addition at C15. Hence, enantioselective EET hydration is determined, principally, by enantiomer specific differences in rates of catalytic turnover and/or substrate binding parameters. On the other hand, the chirality of the diol products is determined by EET enantiomer-dependent differences in the regiochemistry of enzymatic oxirane cleavage and water addition. Esterification resulted in an overall reduction in the rates of epoxide hydration for all three EET-methyl esters (59, 89, and 68% of the EET rate for 8,9-, 11,12-, and 14,15-EET-methyl ester, respectively) and in the loss of regioselectivity during methyl 8(S),9(R)-EET oxirane cleavage. Catalytic EET hydrogenation reduced the rates of EET hydration (56, 45, and 23% of the EET rates for 8,9-, 11,12-, and 14,15-epoxyeicosanoic acids, respectively). Compared to 14,15-EET, enzyme catalyzed hydration of 14,15-epoxyeicosanoic acid was less regioselective and yielded products with a substantially lower chiral purity. Based on these data, as well as on the documentation of 14(R),15(R)-dihydroxyeicosatrienoic acid as an endogenous constituent of rat urine we concluded that: (1) cytosolic epoxide hydrolase plays a significant role in the regio- and stereoselective metabolism of endogenous EETs; (2) differences in the affinities and/or turnover rates of the enzyme for the individual EET antipodes may be responsible for enantioselective EET metabolism; and (3) for 14,15- and 8,9-EET, regioselective and/or enantioselective oxirane water addition is responsible for asymmetric diol formation.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]