These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vitro insulinotropic action of a new non-sulfonylurea hypoglycemic agent, calcium (2s)-2-benzyl-3-(cis-hexahydro-2-isoindolinyl-carbonyl) propionate dihydrate (KAD-1229), in rat pancreatic B-cells.
    Author: Ohnota H, Kobayashi M, Koizumi T, Katsuno K, Sato F, Aizawa T.
    Journal: Biochem Pharmacol; 1995 Jan 18; 49(2):165-71. PubMed ID: 7840793.
    Abstract:
    We examined the in vitro insulinotropic action of a novel non-sulfonylurea compound, calcium (2S)-2-benzyl-3-(cis-hexahydro-2-isoindolinyl-carbonyl) propionate dihydrate (KAD-1229), which is a succinate derivative, using rat pancreatic islets and perfused pancreas. The sodium salt of KAD-1229 free acid (KAD-1229-Na) stimulated insulin secretion from isolated rat islets and perfused rat pancreas in a concentration-dependent manner at 0.1 to 10 microM. It produced a predominant first phase and a less prominent second phase response in the presence of 5.55 mM glucose. An ATP-sensitive K+ (K+ATP) channel activator, diazoxide, eliminated the insulinotropic effect of KAD-1229-Na. Glucose primed the B-cell in the perfused pancreas, but KAD-1229-Na did not. When the insulinotropic effects of 16.7 mM glucose on isolated rat islets were inhibited submaximally by 1 microM norepinephrine, the addition of 1 microM KAD-1229-Na reversed this inhibition. All of these insulinotropic effects of KAD-1229-Na were qualitatively indistinguishable from those of sulfonylurea compounds. We conclude that KAD-1229-Na acts on K+ATP channels of pancreatic B-cells despite its non-sulfonylurea structure.
    [Abstract] [Full Text] [Related] [New Search]