These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reversal by cytidine of cyclopentenyl cytosine-induced toxicity in mice without compromise of antitumor activity.
    Author: Ford H, Driscoll JS, Hao Z, Dobyns KA, Rommel ME, Stowe E, Anderson JO, Plowman J, Waud WR, Johns DG.
    Journal: Biochem Pharmacol; 1995 Jan 18; 49(2):173-80. PubMed ID: 7840794.
    Abstract:
    Among nine compounds surveyed, cytidine was found to be the most effective in reversing the antiproliferative effects of cyclopentenyl cytosine (CPEC) on human T-lymphoblasts (MOLT-4) in culture. Cytidine, at concentrations of 1-25 microM, enabled cells to maintain normal logarithmic growth when added up to 12 hr after exposure to a 200 nM concentration of the oncolytic nucleoside, CPEC. The most abundant CPEC metabolite, CPEC-5'-triphosphate, is a potent [K1 approximately 6 microM] inhibitor of CTP synthetase (EC 6.3.4.2). Accumulation of this inhibitor resulted in a depletion of CTP levels to 17% of their original cellular concentration. Exogenous cytidine reversed CPEC-induced cellular cytotoxicity by suppressing the formation of CPEC-5'-triphosphate by 70%, and by partially replenishing intracellular CTP to at least 60-70% of its original concentration. In vivo, cytidine (500 mg/kg) administered intraperitoneally 4 hr after each daily dose of CPEC (LD10-LD100) for 9 days reduced the toxicity and abolished the lethality of CPEC to non-tumored mice. Of greater practical importance is the finding that, under these experimental conditions, cytidine did not curtail the antineoplastic properties of CPEC in L1210 tumor-bearing mice. Moreover, the concentration range over which CPEC exhibited antineoplastic activity was extended with cytidine administration.
    [Abstract] [Full Text] [Related] [New Search]