These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interhemispheric sharing of visual memory in macaques.
    Author: Doty RW, Ringo JL, Lewine JD.
    Journal: Behav Brain Res; 1994 Oct 20; 64(1-2):79-84. PubMed ID: 7840894.
    Abstract:
    (1) In macaques with the optic chiasm transected, and forebrain commissural communication limited to the anterior commissure or the posterior 5 mm of the splenium of the corpus callosum, visual patterns viewed initially by only one eye (hemisphere) are subsequently recognized by the other with normal accuracy. (2) The efficiency of these commissural paths is further indicated by the fact that even when as many as six "target" images are presented for memorization to only one hemisphere, it makes essentially no difference as to accuracy or latency of performance which hemisphere is then required to distinguish "target" from "non-target" images. (3) By electrically tetanizing structures in one or the other temporal lobe at various times in relation to visual input and/or mnemonic testing it could be shown: (a) that a memory trace restricted in its formation to a single hemisphere was available to the other via either forebrain commissure, and (b) that the memory is formed bilaterally despite unilateral input. (4) When the chiasm is split but the commissures are intact, simultaneous presentation of disparate images to each hemisphere severely perturbs performance, suggesting that the callosal system operates continuously to unify visual percepts; but when only the anterior commissure is intact, the two hemispheres accept incongruent images without perturbation. (5) In the fully "split-brain" condition, when one hemisphere cannot access memories held in the other, the accuracy of performance by each hemisphere is nevertheless burdened by the memory load of its neocortically disconnected partner. It can thus be inferred that the brainstem plays a critical, unifying role in this mnemonic process.
    [Abstract] [Full Text] [Related] [New Search]