These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fat-suppressed MR of the orbit and cavernous sinus: comparison of fast spin-echo and conventional spin-echo.
    Author: Mukherji SK, Tart RP, Fitzsimmons J, Belden C, McGorray S, Guy J, Mancuso AA.
    Journal: AJNR Am J Neuroradiol; 1994 Oct; 15(9):1707-14. PubMed ID: 7847218.
    Abstract:
    PURPOSE: To compare T2-weighted fat-suppressed fast spin-echo imaging with fat-suppressed conventional spin-echo imaging in the detection of normal intraorbital and pericavernous anatomy and orbital disease, and to determine the efficacy of fat saturation with T2-weighted fast spin-echo imaging of the cavernous sinus. METHODS: Contrast-to-noise ratios of normal intraorbital anatomy were calculated and compared in 10 consecutive patients using fat-suppressed fast spin-echo and conventional spin-echo T2-weighted images. Contrast-to-noise ratios of common intraorbital lesions were calculated and compared using fat-suppressed fast spin-echo and fat-suppressed conventional spin-echo. Qualitative evaluation was performed and compared for normal intraorbital anatomy using both fat-suppressed fast spin-echo and fat-suppressed conventional spin-echo in 16 patients. Qualitative evaluation for the detection of normal anatomic structures of the pericavernous region was performed and compared using fast spin-echo with and without fat suppression and fat-suppressed conventional spin-echo T2-weighted images in 16 patients. Fat saturation was performed using standard commercially available chemical saturation technique. RESULTS: Reduced imaging time allowed more acquisitions for fat-suppressed fast spin-echo images, which significantly improved visibility of intraorbital and pericavernous anatomy over fat-suppressed conventional spin-echo. Anatomic visibility was also improved because of reduced motion, phase encoding, and susceptibility artifacts. There was no significant difference between contrast-to-noise ratios for fat-suppressed fast spin-echo and fat-suppressed conventional spin-echo imaging of the lateral and medial rectus muscles. Contrast-to-noise ratios of fat suppressed fast spin-echo of orbital disease was significantly greater than contrast-to-noise ratios of fat-suppressed conventional spin-echo. Detection of several normal anatomic structures of the pericavernous region was significantly improved with non-fat-suppressed fast spin-echo over fat-suppressed fast spin-echo because of significantly reduced magnetic susceptibility artifact. CONCLUSIONS: Fat-suppressed fast spin-echo is superior to fat-suppressed conventional spin-echo for T2-weighted orbital imaging. Non-fat-suppressed fast spin-echo is the preferred pulse sequence for T2-weighted imaging of the cavernous sinus because of the minimal susceptibility artifact.
    [Abstract] [Full Text] [Related] [New Search]