These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A large proportion of pelvic neurons innervating the corpora cavernosa of the rat penis exhibit NADPH-diaphorase activity. Author: Schirar A, Giuliano F, Rampin O, Rousseau JP. Journal: Cell Tissue Res; 1994 Dec; 278(3):517-25. PubMed ID: 7850862. Abstract: Nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry, which indicates the presence of neural nitric oxide synthase, the enzyme responsible for the generation of nitric oxide, was used in combination with retrograde labelling methods to determine, in whole-mounts and sections of rat major pelvic ganglia, whether neurons destined for the penile corpora cavernosa were able to produce nitric oxide. In whole-mount preparations of pelvic ganglia, among the 607 +/- 106 retrogradely labelled neurons innervating the penile corpora cavernosa, 84 +/- 7% were NADPH-diaphorase-positive, 30 +/- 7% of which were intensely histochemically stained. In serial sections of pelvic ganglia, out of a mean count of 451 retrogradely labelled neurons, 65% stained positively for NADPH-diaphorase. An average of 1879 +/- 363 NADPH-diaphorase positive cell bodies was counted in the pelvic ganglion. In the major pelvic ganglion, neurons both fluorescent for Fluorogold or Fast Blue and intensely stained for NADPH-diaphorase were consistently observed in the dorso-caudal part of the ganglia in the area close to the exit of the cavernous nerve and within this nerve. This co-existence was much less constant in other parts of the ganglion. In the rat penis, many NADPH-diaphorase-positive fibres and varicose terminals were observed surrounding the penile arteries and running within the wall of the cavernous spaces. This distribution of NADPH-diaphorase-positive nerve cells and terminals is consistent with the idea that the relaxation of the smooth muscles of the corpora cavernosa and the dilation of the penile arterial bed mediated by postganglionic parasympathetic neurons is attributable to the release of nitric oxide and that nitric oxide plays a crucial role in penile erection.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]