These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evidence that glial cells modulate extracellular pH transients induced by neuronal activity in the leech central nervous system. Author: Rose CR, Deitmer JW. Journal: J Physiol; 1994 Nov 15; 481 ( Pt 1)(Pt 1):1-5. PubMed ID: 7853232. Abstract: 1. The role of the giant neuropile glial cells in the buffering of activity-related extracellular pH changes was studied in segmental ganglia of the leech Hirudo medicinalis L. using pH-sensitive microelectrodes and a slow, two-electrode voltage-clamp system. Neuronal activity was induced by electrical stimulation of a ganglionic side nerve (20 Hz, 1 min). 2. In CO2-HCO3(-)-buffered saline the glial cells were depolarized by 6.5 +/- 2.3 mV and alkalinized by 0.024 +/- 0.006 pH units (mean +/- SD) during the stimulation. The stimulation induced an acidification of 0.032 +/- 0.006 pH units in the extracellular spaces (ECS). 3. Voltage clamping the glial cells suppressed the stimulus-induced glial depolarization and turned the intraglial alkalinization into an acidification of 0.045 +/- 0.021 pH units (n = 6) that closely resembled the acidification observed in the presence of the anion transport blocker DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid, 0.5 mM), and in CO2-HCO(3-)-free saline. 4. Voltage clamping the glial cell resulted in the appearance of a distinct stimulus-induced extracellular alkalinization of 0.024 +/- 0.013 pH units at the onset of the stimulation, as also observed during DIDS application and in the absence of CO2-HCO3-. 5. The results suggest that glial uptake of bicarbonate is mediated by depolarization-induced activation of the electrogenic Na(+)-HCO3- cotransport, which suppresses the profound alkalinization of the ECS during neuronal activity. This is the first direct evidence the glial cells actively modulate extracellular pH changes in a voltage-dependent manner.[Abstract] [Full Text] [Related] [New Search]