These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reduced 5-lipoxygenase metabolism of arachidonic acid in macrophages rrom 1,25-dihydroxyvitamin D3-deficient rats.
    Author: Coffey MJ, Wilcoxen SE, Phare SM, Simpson RU, Gyetko MR, Peters-Golden M.
    Journal: Prostaglandins; 1994 Nov; 48(5):313-29. PubMed ID: 7855310.
    Abstract:
    The peripheral blood monocyte (PBM) migrates into tissues and differentiates into mature tissue macrophages. Previous investigations from our laboratory have demonstrated that PBM have reduced 5-lipoxygenase (5-LO) metabolism of arachidonic acid (AA) and 5-LO activating protein (FLAP) expression as compared to differentiated alveolar macrophages (AM). Moreover, PBM differentiated with 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) displayed increased leukotriene synthesis and a parallel increase in FLAP expression. In the present study, we sought to examine the physiological role of 1,25-(OH)2D3 in the regulation of eicosanoid metabolism in terminally differentiated alveolar and peritoneal macrophages (PM), utilizing a well characterized rat model of vitamin D3-deficiency. AM from vitamin D3-deficient rats demonstrated reduced 5-LO metabolism of AA and a parallel reduction in FLAP expression compared to control rats. Similarly, PM from vitamin D3-deficient rats demonstrated reduced 5-LO metabolism of AA. The effect of vitamin D3 was specific for the 5-LO pathway, not affecting total release of AA or its metabolism via 12-lipoxygenase or cyclooxoygenase (COX) pathways in macrophages. Furthermore, it did not affect COX protein expression in macrophages or type II alveolar epithelial cells. In control animals, 1,25-(OH)2D3 concentrations were greater in bronchoalveolar lavage fluid (2.6-fold) and peritoneal lavage fluid (1.6-fold) than in serum, which may account for the greater FLAP expression in AM and PM than in PBM. These observations suggest that 1,25-(OH)2D3 plays a physiological role in upregulating the 5-LO pathway in tissue macrophages in vivo.
    [Abstract] [Full Text] [Related] [New Search]