These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Classical selenium-dependent glutathione peroxidase expression is decreased secondary to iron deficiency in rats.
    Author: Moriarty PM, Picciano MF, Beard JL, Reddy CC.
    Journal: J Nutr; 1995 Feb; 125(2):293-301. PubMed ID: 7861256.
    Abstract:
    While there are reports that classical selenium-dependent glutathione peroxidase (Se-GPX1) activity is decreased during iron deficiency, the relationship between tissue iron status and Se-GPX1 activity remains speculative. This study was undertaken to investigate the mechanism for the decrease in Se-GPX1 activity during iron deficiency. Male weanling Sprague-Dawley rats were given free access to either an iron-deficient or an iron-adequate diet for eight weeks, after which blood, livers, kidneys, hearts, brains and testes were surgically excised. During iron deficiency, Se-GPX1 mRNA levels in liver tissue were decreased by approximately 55%. Similarly, the concentration of immunoreactive Se-GPX1 protein and total selenium-dependent glutathione peroxidase (Se-GPX) activity were decreased by 55% and 60%, respectively. In kidney, heart and brain total Se-GPX activities were depressed as much as 33%. Selenium concentration in liver was reduced by 42%, whereas the decrease in Se concentrations in kidney, heart, and brain ranged from 17 to 25%. Concentrations of plasma Se also were reduced by 18%, but testes showed little change in either Se-GPX activity or Se concentration during iron deficiency. Results suggest that the synthesis of Se-GPX1 protein is decreased during iron deficiency possibly due to pretranslational regulation.
    [Abstract] [Full Text] [Related] [New Search]