These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The fission yeast gene pmt1+ encodes a DNA methyltransferase homologue. Author: Wilkinson CR, Bartlett R, Nurse P, Bird AP. Journal: Nucleic Acids Res; 1995 Jan 25; 23(2):203-10. PubMed ID: 7862522. Abstract: DNA methylation of cytosine residues is a widespread phenomenon and has been implicated in a number of biological processes in both prokaryotes and eukaryotes. This methylation occurs at the 5-position of cytosine and is catalyzed by a distinct family of conserved enzymes, the cytosine-5 methyltransferases (m5C-MTases). We have cloned a fission yeast gene pmt1+ (pombe methyltransferase) which encodes a protein that shares significant homology with both prokaryotic and eukaryotic m5C-MTases. All 10 conserved domains found in these enzymes are present in the pmt1 protein. This is the first m5C-MTase homologue cloned from a fungal species. Its presence is surprising, given the inability to detect DNA methylation in yeasts. Haploid cells lacking the pmt1+ gene are viable, indicating that pmt1+ is not an essential gene. Purified, bacterially produced pmt1 protein does not possess obvious methyltransferase activity in vitro. Thus the biological significance of the m5C-MTase homologue in fission yeast is currently unclear.[Abstract] [Full Text] [Related] [New Search]