These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Expression of the heparin-binding cytokines, midkine (MK) and HB-GAM (pleiotrophin) is associated with epithelial-mesenchymal interactions during fetal development and organogenesis. Author: Mitsiadis TA, Salmivirta M, Muramatsu T, Muramatsu H, Rauvala H, Lehtonen E, Jalkanen M, Thesleff I. Journal: Development; 1995 Jan; 121(1):37-51. PubMed ID: 7867507. Abstract: Midkine (MK) and heparin binding-growth associated molecule (HB-GAM or pleiotrophin), constitute a new family of heparin-binding proteins implicated in the regulation of growth and differentiation (T. Muramatsu (1993) Int. J. Dev. Biol. 37, 183-188). We used affinity-purified antibodies against MK and HB-GAM to analyze their distribution during mouse embryonic development. From 9 to 14.5 day post-coitum (dpc), both proteins were detected in central and peripheral nervous systems, facial processes, limb buds, sense organs, respiratory, digestive, urogenital, and skeletal systems. MK and HB-GAM were often localized on the surface of differentiating cells and in basement membranes of organs undergoing epithelial-mesenchymal interactions. The level of MK protein decreased considerably in the 16.5 dpc embryo, whereas HB-GAM staining persisted in many tissues. Our in situ hybridization results revealed a widespread expression of MK transcripts that was not always consistent with the distribution of MK protein in developing tissues. In many epithelio-mesenchymal organs MK and HB-GAM were codistributed with syndecan-1, a cell surface proteoglycan. In limb buds and facial processes, MK, HB-GAM, and syndecan-1 were localized to the apical epithelium and the adjacent proliferating mesenchyme. Both MK and HB-GAM bound syndecan-1 in solid-phase assays in a heparan sulfate-dependent manner. The biological effects of MK and HB-GAM on limb and facial mesenchyme were studied in vitro by application of beads preloaded with the proteins. Neither MK nor HB-GAM stimulated mesenchymal cell proliferation or induced syndecan-1 expression. Taken together these results indicate that MK and HB-GAM may play regulatory roles in differentiation and morphogenesis of the vertebrate embryo, particularly in epithelio-mesenchymal organs, and suggest molecular interactions with syndecan-1.[Abstract] [Full Text] [Related] [New Search]