These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Airway neutrophilia and chemokine mRNA expression in sulfur dioxide-induced bronchitis. Author: Farone A, Huang S, Paulauskis J, Kobzik L. Journal: Am J Respir Cell Mol Biol; 1995 Mar; 12(3):345-50. PubMed ID: 7873201. Abstract: Airway inflammation in acute and chronic bronchitis includes a prominent neutrophil influx. Using a rat model of sulfur dioxide (SO2)-induced bronchitis, we investigated the role of the polymorphonuclear leukocyte (PMN) chemokines macrophage inflammatory protein-2 (MIP-2) and KC. Adult female rats were exposed to 230 ppm SO2 for 5 h/day for periods of 1 day to 5 wk. Immunohistochemical identification of rat PMNs in trachea cryostat sections allowed quantitation of a marked neutrophil influx into airways of bronchitic rats (PMNs/trachea ring = 55 +/- 26.2 [1 day SO2] versus 3.6 +/- 2.7 [air]; n = 5, P < or = 0.05). Northern analysis of trachea homogenates demonstrated induction of KC and MIP-2 mRNA expression after 1 day of SO2 and persistence of increased expression after longer exposure periods examined. Pretreatment of rats with dexamethasone (0.5 mg/kg) prior to a 1-day acute SO2 exposure prevented induction of chemokine mRNA and abrogated neutrophil influx completely (PMNs/trachea ring = 6.6 +/- 8.8 versus air controls; n = 5, P = 0.96). To determine if chemokine inhibition by dexamethasone could be further studied in vitro, the rat alveolar macrophage cell line NR8383 was treated with dexamethasone (10(-7) M) before stimulation with lipopolysaccharide (10 micrograms/ml). Pretreatment with dexamethasone substantially decreased induction of both MIP-2 and KC mRNA in response to lipopolysaccharide, indicating the potential utility of in vitro systems to identify additional anti-inflammatory agents. These studies support the hypothesis that the chemokines MIP-2 and KC mediate airway neutrophil influx in both acute and chronic SO2-induced bronchitis in the rat.[Abstract] [Full Text] [Related] [New Search]