These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MH1, a second-site revertant of an Escherichia coli mutant lacking Na+/H+ antiporters (delta nhaA delta nhaB), regains Na+ resistance and a capacity to excrete Na+ in a delta microH(+)-independent fashion.
    Author: Harel-Bronstein M, Dibrov P, Olami Y, Pinner E, Schuldiner S, Padan E.
    Journal: J Biol Chem; 1995 Feb 24; 270(8):3816-22. PubMed ID: 7876124.
    Abstract:
    The Escherichia coli mutant delta nhaA delta nhaB (EP432), which lacks the two specific Na+/H+ antiporter genes, is incapable of efficiently excreting Na+. Accordingly at low K+ (6 mM) medium, its intracellular Na+ concentration is only slightly lower (1.5-2x) than the extracellular concentration (50 mM), explaining the high sensitivity to Na+ (> or = 30 mM) of the mutant. This Na+ sensitivity is shown to be a powerful selection for spontaneous second-site suppressor mutations that allow growth on high Na+ (< or = 0.6 M) with a rate similar to that of the wild type. One such mutation, MH1, maps at 25.7 min on the E. coli chromosome. It confers Na+ but not Li+ resistance upon delta nhaA delta nhaB cells and exposes a Na(+)-excreting capacity, maintaining a Na+ gradient of about 8-10 (at 50 mM extracellular Na+), which is similar to that of the wild type. Although lower, Na+ excretion capacity is also observed in the delta nhaA delta nhaB mutant when grown in medium containing higher K+ (70 mM). This capacity is accompanied with a shift in the sensitivity of the mutant to higher Na+ concentrations (> or = 300 mM). Whereas Na+ excretion by a wild type carrying delta unc is uncoupler sensitive, that of MH1 delta unc is dependent on respiration in an uncoupler-insensitive fashion. It is concluded that under some conditions (high K+ in the medium or in MH1-like mutants), a primary pump driven by respiration is responsible for Na+ extrusion when the Na+/H+ antiporters are not active.
    [Abstract] [Full Text] [Related] [New Search]