These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of LpA-I composition and structure on cholesterol transfer between lipoproteins.
    Author: Meng QH, Sparks DL, Marcel YL.
    Journal: J Biol Chem; 1995 Mar 03; 270(9):4280-7. PubMed ID: 7876187.
    Abstract:
    The effect of high density lipoprotein composition on the rates of unesterified cholesterol exchange between low density lipoproteins (LDL) and well-defined homogeneous discoidal lipoproteins (LpA-I) reconstituted with phosphatidylcholine, cholesterol, and apolipoprotein A-I (apoA-I) has been investigated. LpA-I containing cholesterol and 2, 3, and 4 apoA-I molecules per particle differed in their ability to accept or donate cholesterol. A significant cholesterol exchange occurs between LDL and Lp2A-I (7.8 and 9.6 nm), while there is little or no cholesterol exchange detectable between LDL and Lp3A-I (10.8 and 13.4 nm) and Lp4A-I (17.0 nm) complexes. The cholesterol transfer from LDL to the cholesterol-free Lp2A-I (9.6 nm), Lp3A-I (13.4 nm), and Lp4A-I (17.0 nm) particles also shows significant cholesterol transfer to Lp2A-I, while there is no detectable transfer to Lp3- and 4A-I particles. The rates of cholesterol transfer to cholesterol-free and cholesterol-containing Lp2A-I appear to differ significantly. Cholesterol transfer from LDL to cholesterol-free Lp2A-I is zero order with respect to acceptor concentrations when the Lp2A-I/LDL ratio is above 10. Transfer rates from LDL to cholesterol-free Lp2A-I are faster for the smaller Lp2A-I (8.5 nm) than to the larger Lp2A-I (9.7 nm) and exhibit half-times (t1/2) at 25 degrees C of 4.0 and 5.3 h, respectively. In contrast, cholesterol transfer from LDL to cholesterol-containing Lp2A-I remains dependent upon acceptor concentrations to an acceptor/donor particle ratio of 80. In addition, transfer from LDL to cholesterol-containing Lp2A-I is faster to the 9.6 nm than to 7.8 nm particles, with t1/2 of 1.4 and 2.3 h, respectively. The rates of cholesterol transfer from Lp2A-I to LDL are higher than in the opposite direction, in particular for the small Lp2A-I (7.8 nm), which has a t1/2 of approximately 50 min. The results show that changes in the composition and structure of apoA-I-containing particles have a significant effect on inter-lipoprotein exchange of cholesterol. This suggests that the kinetics of cholesterol transfer to and from reconstituted discoidal LpA-I particles cannot be fully explained by passive aqueous diffusion.
    [Abstract] [Full Text] [Related] [New Search]