These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Origins of open-channel noise in the large potassium channel of sarcoplasmic reticulum.
    Author: Hainsworth AH, Levis RA, Eisenberg RS.
    Journal: J Gen Physiol; 1994 Nov; 104(5):857-83. PubMed ID: 7876826.
    Abstract:
    Open-channel noise was studied in the large potassium channel of the sarcoplasmic reticulum (SR). Inside-out patches were excised directly from the SR of split skeletal muscle fibers of lobster, with lobster relaxing ringer (LRR) in bath and pipette. The power spectrum of open-channel noise is very low and approximately flat in the 100 Hz-10 kHz frequency range. At 20 degrees C, with an applied voltage of 50 mV, the mean single-channel current (i) is 9 pA (mean single-channel conductance = 180 pS) and the mean power spectral density 1.1 x 10(-29) A2/Hz. The latter increases nonlinearly with (i), showing a progressively steeper dependence as (i) increases. At 20 mV, the mean power spectral density is almost independent of (i) and approximately 1.4 times that of the Johnson noise calculated for the equivalent ideal resistor with zero net current; at 70 mV it increases approximately in proportion to (i)2. The mean power spectral density has a weak temperature dependence, very similar to that of (i), and both are well described by a Q10 of 1.3 throughout the range 3-40 degrees C. Discrete ion transport events are thought to account for a significant fraction of the measured open-channel noise, probably approximately 30-50% at 50 mV. Brief interruptions of the single-channel current, due either to blockage of the open channel by an extrinsic aqueous species, or to intrinsic conformational changes in the channel molecule itself, were a possible additional source of open-channel noise. Experiments in modified bathing solutions indicate, however, that open-channel noise is not affected by any of the identified aqueous species present in LRR. In particular, magnesium ions, the species thought most likely to cause brief blockages, and calcium and hydrogen ions, have no detectable effect. This channel's openings exhibit many brief closings and substrates, due to intrinsic gating of the channel. Unresolved brief full closings are calculated to make a negligible contribution (< 1%) to the measured power spectral density. The only significant source of noise due to band width-limited missed events is brief, frequent 80% substrates (mean duration 20 microseconds, mean frequency 1,000 s-1) which account for a small part of the measured power spectral density (approximately 14%, at 50 mV, 20 degrees C). We conclude that a large fraction of the measured open-channel noise results from intrinsic conductance fluctuations, with a corner frequency higher than the resolution of our recordings, in the range 10(4)-10(7) Hz.(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]