These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Acoustic rhinometry in the evaluation of nasal obstruction.
    Author: Roithmann R, Cole P, Chapnik J, Shpirer I, Hoffstein V, Zamel N.
    Journal: Laryngoscope; 1995 Mar; 105(3 Pt 1):275-81. PubMed ID: 7877416.
    Abstract:
    Acoustic rhinometry (AR) is a recently developed objective technique for assessment of geometry of the nasal cavity. The technique is based on the analysis of sound waves reflected from the nasal cavities. It measures cross-sectional areas and nasal volume (NV). To obtain dependable assessments of nasal resistance by rhinomanometry or cross-sectional area measurements by AR, it is essential that the structural relations of the compliant vestibular region remain undisturbed by the measuring apparatus. The use of nozzles in making these measurements carries a great risk of direct distortion of the nasal valve. We used a nasal adapter that does not invade the nasal cavity and a chin support that stabilizes the head. In 51 healthy nasal cavities, the average minimum cross-sectional area (MCA) was 0.62 cm2 at 2.35 cm from the nostril and 0.67 cm2 at 2 cm from the nostril, respectively, before and after topical decongestion of the nasal mucosa. The MCA and NV findings in this group were significantly higher than MCA and NV (P < 0.001) in people with structural or mucosal abnormalities before mucosal decongestion. After mucosal decongestion, the MCA and NV were significantly higher in healthy nasal cavities than in nasal cavities with structural abnormalities (P < 0.001) but were not higher than nasal cavities with mucosal abnormalities (MCA, P = 0.05; NV, P = 0.06). A nozzle was applied in 20 healthy nasal cavities after mucosal decongestion, and a significantly higher MCA was found compared to measurements made with the nasal adapter (P = 0.02). We conclude that the nasal adapter, which does not invade the nasal cavities, avoids the distortion of the nasal valve and gives more accurate results.
    [Abstract] [Full Text] [Related] [New Search]