These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The c-myc promoter binding protein (MBP-1) and TBP bind simultaneously in the minor groove of the c-myc P2 promoter.
    Author: Chaudhary D, Miller DM.
    Journal: Biochemistry; 1995 Mar 14; 34(10):3438-45. PubMed ID: 7880838.
    Abstract:
    The c-myc promoter binding protein (MBP-1) is a DNA binding protein which negatively regulates the expression of the human c-myc gene. MBP-1 binds to a sequence which overlaps the binding site for the general transcription factor TBP, within the c-myc P2 promoter region. Since TBP binds in the minor groove, MBP-1 might inhibit c-myc transcription by preventing the formation of a functional preinitiation complex. In support of this hypothesis, we have demonstrated that MPB-1 is a minor groove binding protein. In order to characterize MBP-1 binding, we substituted A-T base pairs in the MBP-1 binding site with I-C base pairs, which changes the major groove surface without altering the minor groove surface. This substitution did not inhibit the sequence-specific binding of MBP-1 and TBP. On the other hand, G-C to I-C substitution within the MBP-1 binding site alters the minor groove and prevents MBP-1 binding. Competitive electrophoretic mobility shift assays were used to show that berenil, distamycin, and mithramycin, all of which bind in the minor groove, compete with MBP-1 for binding to the MPB-1 binding site. These minor groove binding ligands also effectively inhibit the simultaneous DNA binding activity of both MBP-1 and TBP. We conclude that both MBP-1 and TBP can bind simultaneously in the minor groove of the TATA motif on the c-myc P2 promoter. This suggests that MBP-1 may negatively regulate c-myc gene expression by preventing efficient transcription initiation.
    [Abstract] [Full Text] [Related] [New Search]