These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of histamine- and UTP-induced increases in Ins(1,4,5)P3, Ins (1,3,4,5)P4 and Ca2+ by cyclic AMP in DDT1 MF-2 cells. Author: Sipma H, Duin M, Hoiting B, den Hertog A, Nelemans A. Journal: Br J Pharmacol; 1995 Jan; 114(2):383-90. PubMed ID: 7881738. Abstract: 1. Stimulation of P2U-purinoceptors with UTP or histamine H1-receptors with histamine gave rise to the formation of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) in DDT1 MF-2 smooth muscle cells. 2. Stimulation of P2U-purinoceptors or histamine H1-receptors caused an increase in cytoplasmic Ca2+, consisting of an initial peak, representing the release of Ca2+ from internal stores and a sustained phase representing Ca2+ influx. 3. The P2U-purinoceptor-mediated Ca(2+)-entry mechanism was more sensitive to UTP than Ca(2+)-mobilization (EC50: 3.3 microM +/- 0.4 microM vs 55.1 microM +/- 9.2 microM), in contrast to these processes activated by histamine H1-receptors (EC50: 5.8 microM +/- 0.6 microM vs 3.1 microM +/- 0.5 microM). 4. Pre-stimulation of cells with several adenosine 3':5'-cyclic monophosphate (cyclic AMP) elevating agents, reduced the histamine H1-receptor-mediated formation of Ins(1,4,5)P3 and Ins(1,3,4,5)P4. Forskolin completely inhibited Ins(1,4,5)P3 formation (IC50: 158 +/- 24 nM) whereas Ins(1,3,4,5)P4 formation was inhibited by only 45% (IC50: 173 +/- 16 nM). The P2U-purinoceptor-mediated production of these inositol phosphates was not affected by cyclic AMP. 5. Forskolin and isoprenaline reduced the histamine-induced increase in cytoplasmic Ca2+, as measured in Ca2+ containing medium and in nominally Ca(2+)-free medium but did not change the UTP-induced increase in cytoplasmic Ca2+. 6. These results clearly demonstrate that cyclic AMP differentially regulates components of the histamine induced phospholipase C signal transduction pathway. Furthermore, cyclic AMP does not affect the phospholipase C pathway activated by stimulation of P2U-purinoceptors in DDT1 MF-2 cells.[Abstract] [Full Text] [Related] [New Search]