These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enoyl-CoA hydratase and isomerase form a superfamily with a common active-site glutamate residue.
    Author: Müller-Newen G, Janssen U, Stoffel W.
    Journal: Eur J Biochem; 1995 Feb 15; 228(1):68-73. PubMed ID: 7883013.
    Abstract:
    Mitochondrial 2-enoyl-CoA hydratase (mECH) and 3,2-trans-enoyl-CoA isomerase (mECI), two enzymes which catalyze totally different reactions in fatty acid beta-oxidation, belong to the low-similarity hydratase/isomerase enzyme superfamily. Their substrates and reaction mechanisms are similar [Müller-Newen, G. & Stoffel, W. (1993) Biochemistry 32, 11,405-11,412]. Glu164 of mECH is the only amino acid with a protic side chain that is conserved in these monofunctional and polyfunctional enzymes with 2-enoyl-CoA hydratase and 3,2-trans-enoyl-CoA isomerase activities. We tested our hypothesis that Glu164 of mECH is the putative active-site amino acid responsible for the base-catalyzed alpha-deprotonation in the hydratase/dehydrase and isomerase reaction. We functionally expressed rat liver mECH wild-type and [E164Q] mutant enzymes in Escherichia coli. Characterization of the purified wild-type and mutant enzymes revealed that the replacement of Glu164 by Gln lowers the kcat value more than 100,000-fold, whereas the Km value is only moderately affected. We have demonstrated in a previous study that Glu165 is indispensable for the 3,2-trans-enoyl-CoA isomerase activity. Taking these results together, we conclude that the conserved glutamic acid is the essential basic group in the active sites of 2-enoyl-CoA hydratase (Glu164) and 3,2-trans-enoyl-CoA isomerase (Glu165), and that these enzymes are not only evolutionarily but also functionally and mechanistically related.
    [Abstract] [Full Text] [Related] [New Search]