These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Human IMR-32 neuroblastoma cells as a model cell line in Alzheimer's disease research.
    Author: Neill D, Hughes D, Edwardson JA, Rima BK, Allsop D.
    Journal: J Neurosci Res; 1994 Nov 01; 39(4):482-93. PubMed ID: 7884825.
    Abstract:
    The present study investigated expression and processing of amyloid precursor protein by neuronally differentiated IMR-32 neuroblastoma cells. APP mRNA in these cells was found to consist of approximately 58% APP695, 38% APP751, and < 4% APP770. APP-immunoreactive bands detected in western blots of cellular protein extracts were only detected by anti-APP antibodies to peptides with strong homology to APLP2, suggesting that these bands represent APP-like proteins and not APP itself. This result suggests that previous studies claiming immunodetection of cellular forms of APP may have to be re-evaluated. Four main species of C-terminal truncated, secreted APP were detected in blots of protein extracts from medium conditioned by these cells. The immunoreactive profile of these bands suggested a cleavage site N-terminal to the Lys16-Leu17 bond of alpha-secretase. This, together with differences in number and molecular mass of APP-immunoreactive bands between secreted APP from IMR-32 cells and that from the commonly used PC-12 cells, suggests differences in APP processing between these two neuronally differentiated cell lines. In theory, IMR-32 cells being of human neuronal origin may be a more appropriate cell line to study APP-processing in relation to Alzheimer's disease than the rat phaeochromocytoma PC-12 cell line. Therefore, these detected differences warrant further investigation. Additionally IMR-32 cells under certain tissue culture conditions can form intracellular fibrillary material that reacts with anti-PHF specific antibodies. Neuronally differentiated IMR-32 cells could therefore be used as a model system to investigate possible interactions between APP-processing and PHF formation.
    [Abstract] [Full Text] [Related] [New Search]