These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The role of the cholecystokinin-B/gastrin receptor transmembrane domains in determining affinity for subtype-selective ligands.
    Author: Kopin AS, McBride EW, Quinn SM, Kolakowski LF, Beinborn M.
    Journal: J Biol Chem; 1995 Mar 10; 270(10):5019-23. PubMed ID: 7890609.
    Abstract:
    We have examined the role of transmembrane domain amino acids in conferring subtype-selective ligand affinity to the human cholecystokinin-B (CCK-B)/gastrin receptor. Fifty-eight residues were sequentially replaced by the corresponding amino acids from the pharmacologically distinct CCK-A receptor subtype. 125I-CCK-8 competition binding experiments were performed to compare all mutant CCK-B/gastrin receptor constructs with the wild type control. Affinities for the nonselective agonist, CCK-8, as well as the subtype-selective peptide (gastrin), peptide-derived (PD135,158), and nonpeptide (L365,260) and L364,718) ligands were assessed. All of the mutants retained relatively high affinity for CCK-8, suggesting that the tertiary structure of these receptors was well maintained. Only eight of the amino acid substitutions had a significant effect on subtype selective binding. When compared with the wild type, single point mutations in the CCK-B/gastrin receptor decreased affinity for gastrin, L365,260, and PD135,158 up to 17-,23-, and 61-fold, respectively. In contrast, the affinity for L364,718 increased up to 63-fold. None of the single amino acid substitutions, however, was sufficient to fully account for the subtype selectivity of any tested compound. Rather, CCK-B/gastrin receptor affinity appears to be influenced by multiple residues acting in concert. The 8 pharmacologically important amino acids cluster in the portion of the transmembrane domains adjacent to the cell surface. The spatial orientation of these residues was analyzed with a rhodopsin-based three-dimensional model of G-protein coupled receptor structure (Baldwin, J.M. (1993) EMBO J. 12, 1693-1703). This model predicts that the 8 crucial residues project into a putative ligand pocket, similar to the one which is well established for biogenic amine receptors (Caron, M. G., and Lefkowitz, R.J. (1993) Recent Prog. Horm. Res. 48, 277-290; Strader, C.D., Sigal, I.S., and Dixon, R.A. (1989) Trends Pharmacol. Sci. 10, Dec. Suppl., 26-30).
    [Abstract] [Full Text] [Related] [New Search]