These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Limited and defined truncation at the C terminus enhances receptor binding and degranulation activity of the neutrophil-activating peptide 2 (NAP-2). Comparison of native and recombinant NAP-2 variants.
    Author: Ehlert JE, Petersen F, Kubbutat MH, Gerdes J, Flad HD, Brandt E.
    Journal: J Biol Chem; 1995 Mar 17; 270(11):6338-44. PubMed ID: 7890771.
    Abstract:
    We have previously described a C-terminally truncated variant of the chemokine neutrophil-activating peptide 2 (NAP-2) that exhibited higher neutrophil-stimulating capacity than the full-size polypeptide. To investigate the impact of the NAP-2 C terminus on biological activity and receptor binding, we have now purified the novel molecule to homogeneity. Furthermore, we have cloned, expressed in Escherichia coli, and purified full-size recombinant NAP-2 (rNAP-2-(1-70)) and a series of C-terminally deleted variants (rNAP-2-(1-69) to rNAP-2-(1-64)). Biochemical and immunochemical analyses revealed that the natural NAP-2 variant was structurally identical to the rNAP-2-(1-66) isoform. As compared with their respective native and recombinant full-size counterparts, both molecules exhibited approximately 3-4-fold enhanced potency in the induction of neutrophil degranulation as well as 3-fold enhanced binding affinity for specific receptors on these cells. All other variants were considerably less active. The natural occurrence of a NAP-2 variant truncated by exactly four residues at the C terminus suggests that limited and defined proteolysis at this site plays a role in the regulation of the biological function of the chemokine.
    [Abstract] [Full Text] [Related] [New Search]