These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: K-252a promotes survival and choline acetyltransferase activity in striatal and basal forebrain neuronal cultures. Author: Glicksman MA, Forbes ME, Prantner JE, Neff NT. Journal: J Neurochem; 1995 Apr; 64(4):1502-12. PubMed ID: 7891076. Abstract: The organic molecule K-252a promoted cell survival, neurite outgrowth, and increased choline acetyltransferase (ChAT) activity in rat embryonic striatal and basal forebrain cultures in a concentration-dependent manner. A two- to threefold increase in survival was observed at 75 nM K-252a in both systems. A single application of K-252a at culture initiation prevented substantial (> 60%) cell death that otherwise occurred after 4 days in striatal or basal forebrain cultures. A 5-h exposure of striatal or basal forebrain cells to K-252a, followed by its removal, resulted in survival equivalent to that observed in cultures continually maintained in its presence. This is in contrast to results found with a 5-h exposure of basal forebrain cultures to nerve growth factor (NGF). Acute exposure of basal forebrain cultures to K-252a, but not to NGF, increased ChAT activity, indicating that NGF was required the entire culture period for maximum activity. Striatal cholinergic and GABAergic neurons were among the neurons rescued by K-252a. Of the protein growth factors tested in striatal cultures (ciliary neurotrophic factor, neurotrophin-3, NGF, brain-derived neurotrophic factor, interleukin-2, basic fibroblast growth factor), only brain-derived neurotrophic factor promoted survival. The enhancement of survival and ChAT activity of basal forebrain and striatal neurons by K-252a defines additional populations of neurons in which survival and/or differentiation is regulated by a K-252a-responsive mechanism. The above results expand the potential therapeutic targets for these molecules for the treatment of neuro-degenerative diseases.[Abstract] [Full Text] [Related] [New Search]