These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Use of interrupted saccade paradigm to study spatial and temporal dynamics of saccadic burst cells in superior colliculus in monkey. Author: Keller EL, Edelman JA. Journal: J Neurophysiol; 1994 Dec; 72(6):2754-70. PubMed ID: 7897487. Abstract: 1. We recorded the spatial and temporal dynamics of saccade-related burst neurons (SRBNs) found in the intermediate layers of the superior colliculus (SC) in the alert, behaving monkey. These burst cells are normally the first neurons recorded during radially directed microelectrode penetrations of the SC after the electrode has left the more dorsally situated visual layers. They have spatially delimited movement fields whose centers describe the well-studied motor map of the SC. They have a rather sharp, saccade-locked burst of activity that peaks just before saccade onset and then declines steeply during the saccade. Many of these cells, when recorded during saccade trials, also have an early, transient visual response and an irregular prelude of presaccadic activity. 2. Because saccadic eye movements normally have very stereotyped durations and velocity trajectories that vary systematically with saccade size, it has been difficult in the past to establish quantitatively whether the activity of SRBNs temporally codes dynamic saccadic control signals, e.g., dynamic motor error or eye velocity, where dynamic motor error is defined as a signal proportional to the instantaneous difference between desired final eye position and the actual eye position during a saccade. It has also not been unequivocally established whether SRBNs participate in an organized spatial shift of ensemble activity in the intermediate layers of the SC during saccadic eye movements. 3. To address these issues, we studied the activity of SRBNs using an interrupted saccade paradigm. Saccades were interrupted with pulsatile electrical stimulation through a microelectrode implanted in the omnipauser region of the brain stem while recordings were made simultaneously from single SRBNs in the SC. 4. Shortly after the beginning of the stimulation (which was electronically triggered at saccade onset), the eyes decelerated rapidly and stopped completely. When the high-frequency (typically 300-400 pulses per second) stimulation was terminated (average duration 12 ms), the eye movement was reinitiated and a resumed saccade was made accurately to the location of the target. 5. When we recorded from SRBNs in the more caudal colliculus, which were active for large saccades, cell discharge was powerfully and rapidly suppressed by the stimulation (average latency = 3.8 ms). Activity in the same cells started again just before the onset of the resumed saccade and continued during this saccade even though it has a much smaller amplitude than would normally be associated with significant discharge for caudal SC cells.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]