These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reperfusion induces 5-lipoxygenase translocation and leukotriene C4 production in ischemic brain.
    Author: Ohtsuki T, Matsumoto M, Hayashi Y, Yamamoto K, Kitagawa K, Ogawa S, Yamamoto S, Kamada T.
    Journal: Am J Physiol; 1995 Mar; 268(3 Pt 2):H1249-57. PubMed ID: 7900879.
    Abstract:
    5-Lipoxygenase (5-LO) converts arachidonic acid, released from membrane phospholipids upon external stimulation, to leukotriene C4 (LTC4), which induces various kinds of cellular and molecular responses. We examined the effects of 5 min of ischemia on brain 5-LO and LTC4 during reperfusion using the gerbil model of transient forebrain ischemia that develops neuronal necrosis selectively in the hippocampus. Neurons exhibited dense 5-LO immunoreactivity; 5-LO was partially redistributed from cytosolic to particulate fractions 3 min during reperfusion. LTC4 was generated in neurons and was increased in all forebrain regions during reperfusion. Postischemic increases in LTC4 were inhomogeneous; a greater increase was observed in the hippocampus (13.37 +/- 0.24 pmol/g tissue) than in the other regions (cerebral cortex: 3.29 +/- 1.09 pmol/g). Superoxide dismutase and dimethylthiourea, oxygen radical scavengers, attenuated the production of LTC4 and damage to the neurons in the hippocampus during reperfusion. Our findings indicated that reperfusion, which was associated with translocation of cytosolic 5-LO to membranes and generation of oxygen radicals, induced the production of LTC4 and suggested that excess LTC4 production may mediate irreversible reperfusion injuries in the hippocampal neurons.
    [Abstract] [Full Text] [Related] [New Search]